Interperetable AI: Building Explainable Machine Learning Systems
by: Ajay Thampi (Author)
Publisher:Manning Publications
Edition:1st
Publication Date: 17 Oct. 2022
Language:English
Print Length:275 pages
ISBN-10:161729764X
ISBN-13:9781617297649
Book Description
AI models can become so complex that even experts have difficulty understanding them―and forget about explaining the nuances of a cluster of novel algorithms to a business stakeholder! InterpretableAI is filled with cutting-edge techniques that will improve your understanding of how your AI models function. InterpretableAI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and opensource libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you toidentify the patterns your model has learned, and presents best practices for building fair and unbiased models.How deep learning models produce their results is often a complete mystery, even to their creators. These AI”black boxes” can hide unknown issues―including data leakage, the replication of human bias, and difficulties complying with legal requirements such as the EU’s “right to explanation.” State-of-the-art interpretability techniques have been developed to understand even the most complex deep learning models, allowing humans to follow an AI’s methods and to better detect when it has made a mistake.
About the Author
Review “I think this is a valuable book both for beginners as well for more experienced users.”Kim Falk Jørgensen“This book provides a great insight into the interpretability step of developing a structured learning robust AI systems.” IzharHaq“Really great introduction to interpretability of ML models as well asgreat examples of how you can do it to your own models.” JonathanWood“Techniques are consistently presented with excellent examples.” JamesJ. Byleckie“A fine book towards making ML models less opaque.” AlainCouniot“Read this to understand what the model actually says about the underlying data.” Shashank Polasa“Everybody working with ML models should be able to interpret (and check) results. This book will help you with that.” KaiGellien From the Back Cover Interpretable AI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting-edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and open source libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you to identify the patterns your model has learned, and presents best practices for building fair and unbiased models. When you’re done, you’ll be able to improve your AI’s performance during training, and build robust systems that counter act errors from bias, data leakage, and concept drift. About the Author Ajay Thampi is a machine learning engineer at a large tech company primarily focused on responsible AI and fairness. He holds a PhD and his research was focused on signal processing and machine learning. He has published papers at leading conferences and journals on reinforcement learning, convex optimization, and classical machine learning techniques applied to 5G cellular networks. Read more
Interperetable AI: Building Explainable Machine Learning Systems
未经允许不得转载:电子书百科大全 » Interperetable AI: Building Explainable Machine Learning Systems
相关推荐
- 100 Facts About Artificial Intelligence: English to Spanish (100 Facts Language Learning Series) (Spanish Edition)
- Cyber Security From Beginner To Expert Cyber Security Made Easy For Absolute Beginners
- SPSS For Beginners: An Illustrative Step-by-Step Approach to Analyzing Statistical data
- Learn to Code: Learn HTML, CSS and JavaScript and build a website, an app and a game
- Pro Angular 16
- Oracle Linux Cookbook: Embrace Oracle Linux and master Linux Server management
- Developing Blockchain Solutions in the Cloud: Design and develop blockchain-powered Web3 apps on AWS, Azure, and GCP
- Android Programming for Beginners: Learn All the Java and Android Skills You Need to Start Making Powerful Mobile Applications
电子书百科大全
评论前必须登录!
立即登录 注册