Warning: Constant WP_DEBUG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 98

Warning: Constant WP_DEBUG_LOG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 99

Warning: Constant WP_DEBUG_DISPLAY already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 100
From Unimodal to Multimodal Machine Learning: An Overview (SpringerBriefs in Computer Science)-电子书百科大全

From Unimodal to Multimodal Machine Learning: An Overview (SpringerBriefs in Computer Science)

From Unimodal to Multimodal Machine Learning: An Overview (SpringerBriefs in Computer Science)
by: Blaž Škrlj (Author)
Publisher:Springer
Edition:2024th
Publication Date: May 22, 2024
Language:English
Print Length:83 pages
ISBN-10:3031570154
ISBN-13:9783031570155
Book Description
With the increasing amount of various data types, machine learning methods capable of leveraging diverse sources of information have become highly relevant. Deep learning-based approaches have made significant progress in learning from texts and images in recent years. These methods enable simultaneous learning from different types of representations (embeddings). Substantial advancements have also been made in joint learning from different types of spaces. Additionally, other modalities such as sound, physical signals from the environment, and time series-based data have been recently explored. Multimodal machine learning, which involves processing and learning from data across multiple modalities, has opened up new possibilities in a wide range of applications, including speech recognition, natural language processing, and image recognition.From Unimodal to Multimodal Machine Learning: An Overview gradually introduces the concept of multimodal machine learning, providing readers with the necessary background to understand this type of learning and its implications. Key methods representative of different modalities are described in more detail, aiming to offer an understanding of the peculiarities of various types of data and how multimodal approaches tend to address them (although not yet in some cases). The book examines the implications of multimodal learning in other domains and presents alternative approaches that offer computationally simpler yet still applicable solutions. The final part of the book focuses on intriguing open research problems, making it useful for practitioners who wish to better understand the limitations of existing methods and explore potential research avenues to overcome them
About the Author
With the increasing amount of various data types, machine learning methods capable of leveraging diverse sources of information have become highly relevant. Deep learning-based approaches have made significant progress in learning from texts and images in recent years. These methods enable simultaneous learning from different types of representations (embeddings). Substantial advancements have also been made in joint learning from different types of spaces. Additionally, other modalities such as sound, physical signals from the environment, and time series-based data have been recently explored. Multimodal machine learning, which involves processing and learning from data across multiple modalities, has opened up new possibilities in a wide range of applications, including speech recognition, natural language processing, and image recognition.From Unimodal to Multimodal Machine Learning: An Overview gradually introduces the concept of multimodal machine learning, providing readers with the necessary background to understand this type of learning and its implications. Key methods representative of different modalities are described in more detail, aiming to offer an understanding of the peculiarities of various types of data and how multimodal approaches tend to address them (although not yet in some cases). The book examines the implications of multimodal learning in other domains and presents alternative approaches that offer computationally simpler yet still applicable solutions. The final part of the book focuses on intriguing open research problems, making it useful for practitioners who wish to better understand the limitations of existing methods and explore potential research avenues to overcome them Read more

 收藏 (0) 打赏

您可以选择一种方式赞助本站

支付宝扫一扫赞助

微信钱包扫描赞助

未经允许不得转载:电子书百科大全 » From Unimodal to Multimodal Machine Learning: An Overview (SpringerBriefs in Computer Science)

分享到: 生成海报

评论 抢沙发

评论前必须登录!

立即登录   注册

登录

忘记密码 ?

切换登录

注册

我们将发送一封验证邮件至你的邮箱, 请正确填写以完成账号注册和激活