Automotive Security Analyzer for Exploitability Risks: An Automated and Attack Graph-Based Evaluation of On-Board Networks

Automotive Security Analyzer for Exploitability Risks: An Automated and Attack Graph-Based Evaluation of On-Board Networks
Author: by Martin Salfer (Author)
Publisher: Springer Vieweg
Edition: 2024th
Publication Date: 2024-03-16
Language: English
Print Length: 268 pages
ISBN-10: 3658435054
ISBN-13: 9783658435059


Book Description
Our lives depend on automotive cybersecurity, protecting us inside and near vehicles. If vehicles go rogue, they can operate against the driver’s will and potentially drive off a cliff or into a crowd. The “Automotive Security Analyzer for Exploitability Risks” (AutoSAlfER) evaluates the exploitability risks of automotive on-board networks by attack graphs. AutoSAlfER’s Multi-Path Attack Graph algorithm is 40 to 200 times smaller in RAM and 200 to 5 000 times faster than a comparable implementation using Bayesian networks, and the Single-Path Attack Graph algorithm constructs the most reasonable attack path per asset with a computational, asymptotic complexity of only O(n * log(n)), instead of O(n²). AutoSAlfER runs on a self-written graph database, heuristics, pruning, and homogenized Gaussian distributions and boosts people’s productivity for a more sustainable and secure automotive on-board network. Ultimately, we enjoy more safety and security in and around autonomous, connected, electrified, and shared vehicles.


From the Back Cover

Our lives depend on automotive cybersecurity, protecting us inside and near vehicles. If vehicles go rogue, they can operate against the driver’s will and potentially drive off a cliff or into a crowd. The “Automotive Security Analyzer for Exploitability Risks” (AutoSAlfER) evaluates the exploitability risks of automotive on-board networks by attack graphs. AutoSAlfER’s Multi-Path Attack Graph algorithm is 40 to 200 times smaller in RAM and 200 to 5 000 times faster than a comparable implementation using Bayesian networks, and the Single-Path Attack Graph algorithm constructs the most reasonable attack path per asset with a computational, asymptotic complexity of only O(n * log(n)), instead of O(n²). AutoSAlfER runs on a self-written graph database, heuristics, pruning, and homogenized Gaussian distributions and boosts people’s productivity for a more sustainable and secure automotive on-board network. Ultimately, we enjoy more safety and security in and around autonomous, connected, electrified, and shared vehicles.

About the Author
Dr. Martin Salfer is an IT security researcher at TUM and a tech lead at an automaker. He earned his Ph.D. in IT Security from TUM, completed his M.Sc. with honours in Software Engineering at UniA/LMU/TUM, and obtained his B.Sc. in Computer Science from HM, with a study abroad at KPU in Vancouver, Canada, and ESIEA in Paris, France, and a research visit at NII in Tokyo, Japan. He is the lead author of 28 publications, including five IT security patents.


About the Author

Dr. Martin Salfer is an IT security researcher at TUM and a tech lead at an automaker. He earned his Ph.D. in IT Security from TUM, completed his M.Sc. with honours in Software Engineering at UniA/LMU/TUM, and obtained his B.Sc. in Computer Science from HM, with a study abroad at KPU in Vancouver, Canada, and ESIEA in Paris, France, and a research visit at NII in Tokyo, Japan. He is the lead author of 28 publications, including five IT security patents.

Amazon page

资源下载资源下载价格10立即购买
1111

未经允许不得转载:电子书百科大全 » Automotive Security Analyzer for Exploitability Risks: An Automated and Attack Graph-Based Evaluation of On-Board Networks

评论 0

评论前必须登录!

登陆 注册