Warning: Constant WP_DEBUG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 98

Warning: Constant WP_DEBUG_LOG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 99

Warning: Constant WP_DEBUG_DISPLAY already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 100
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab: 113 (Fluid Mechanics and Its Applications, 113)-电子书百科大全

The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab: 113 (Fluid Mechanics and Its Applications, 113)

The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab: 113 (Fluid Mechanics and Its Applications, 113)
by: F. Moukalled(Author),L. Mangani(Author),M. Darwish(Author)&0more
Publisher: Springer
Edition: 1st ed. 2015
Publication Date: 25 Aug. 2015
Language: English
Print Length: 814 pages
ISBN-10: 3319168738
ISBN-13: 9783319168739
Book Description
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems.With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, andas a reference for CFD programmers and researchers.

About the Author

Review “Directed towards future practitioners such as engineers the authors first provide an introduction to fluid dynamics presupposing but a modicum of mathematical and physical knowledge. … . A number of exercises plus special chapters on modelling incompressible and compressible flow make the book very useful for its purpose.” (H. Muthsam, Monatshefte für Mathematik, Vol. 187 (1), September, 2018)“The book is very attractive, carefully written and easy to read by those interested in learning about finite volume methods for fluid dynamics. The authors have made an important effort to bridge the gap between classroom material and actual model development questions. The text is well illustrated by means of quality figures helping to understand the described concepts. Furthermore, the book contains pieces of academic codes in MATLAB … . It is certainly a useful, practical and valuable book.” (Pilar Garcia-Navarro, Mathematical Reviews, May, 2016) From the Back Cover This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems.With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, andas a reference for CFD programmers and researchers. About the Author Fadl Moukalled received his PhD degree in Mechanical Engineering from Louisiana State University in 1987. During that same year he joined the Mechanical Engineering Department at the American University of Beirut where currently he serves as a Professor. He is research interests cover several aspects of the finite volume method and its use in computational fluid dynamics. A founding member of the CFD Group at AUB, he worked on convection schemes, pressure based segregated algorithms for incompressible and compressible flows, adaptive grid methods, multigrid methods, transient schemes for free surface flows, multiphase flows, and fully coupled pressure based solvers for incompressible, compressible, and multiphase flows.Luca Mangani received his PhD degree form the University of Florence in 2006, where he worked on the development of a state-of-the-art turbo machinery code in OpenFOAM® for heat transfer and combustion analysis. After three years of post-doc work,he joined the Lucerne University of Applied Sciences and Arts as Senior Research and chief engineer for CFD simulations. Since 2014 he is serving as an Associate Professor at the fluid mechanics and hydro-machines department, where he manages a variety of projects with industrial partners aimed at developing advanced and novel CFD tools. His research interests include pressure and density-based solvers, segregated and fully coupled algorithms, fluid-structure interaction (FSI), turbulence, and conjugate heat transfer modeling.Marwan Darwish received his PhD degree in Materials Processing from BRUNEL University in 1991. He then joined the BICOM institute for one year as a post-doc before joining the Mechanical Engineering Department at the American University of Beirut in 1992, where he currently serves as a Professor. His research interest covers a range of topics including solidification, advanced numerics, free surface flow, high resolution schemes, multiphase flows, coupled algorithms, and algebraic multigrid. He is a founding member of the CFD Group at AUB. Read more

 收藏 (0) 打赏

您可以选择一种方式赞助本站

支付宝扫一扫赞助

微信钱包扫描赞助

未经允许不得转载:电子书百科大全 » The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab: 113 (Fluid Mechanics and Its Applications, 113)

分享到: 生成海报

评论 抢沙发

评论前必须登录!

立即登录   注册

登录

忘记密码 ?

切换登录

注册

我们将发送一封验证邮件至你的邮箱, 请正确填写以完成账号注册和激活