Warning: Constant WP_DEBUG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 98

Warning: Constant WP_DEBUG_LOG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 99

Warning: Constant WP_DEBUG_DISPLAY already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 100
Solving Optimization Problems with the Heuristic Kalman Algorithm: New Stochastic Methods: 212 (Springer Optimization and Its Applications, 212)-电子书百科大全

Solving Optimization Problems with the Heuristic Kalman Algorithm: New Stochastic Methods: 212 (Springer Optimization and Its Applications, 212)

Solving Optimization Problems with the Heuristic Kalman Algorithm: New Stochastic Methods: 212 (Springer Optimization and Its Applications, 212)
by: Rosario Toscano (Author)
Publisher: Springer
Edition: 2024th
Publication Date: 22 Mar. 2024
Language: English
Print Length: 306 pages
ISBN-10: 3031524586
ISBN-13: 9783031524585
Book Description
This text focuses on simple and easy-to-use design strategies for solving complex engineering problems that arise in several fields of engineering design, namely non-convex optimization problems. The main optimization tool used in this book to tackle the problem of nonconvexity is the Heuristic Kalman Algorithm (HKA). The main characteristic of HKA is the use of a stochastic search mechanism to solve a given optimization problem. From a computational point of view, the use of a stochastic search procedure appears essential for dealing with non-convex problems.The topics discussed in this monograph include basic definitions and concepts from the classical optimization theory, the notion of the acceptable solution, machine learning, the concept of preventive maintenance, and more. The Heuristic Kalman Algorithm discussed in this book applies to many fields such as robust structured control, electrical engineering, mechanical engineering, machine learning, reliability, and preference models. This large coverage of practical optimization problems makes this text very useful to those working on and researching systems design. The intended audience includes industrial engineers, postgraduates, and final-year undergraduates in various fields of systems design.

About the Author

From the Back Cover This text focuses on simple and easy-to-use design strategies for solving complex engineering problems that arise in several fields of engineering design, namely non-convex optimization problems. The main optimization tool used in this book to tackle the problem of nonconvexity is the Heuristic Kalman Algorithm (HKA). The main characteristic of HKA is the use of a stochastic search mechanism to solve a given optimization problem. From a computational point of view, the use of a stochastic search procedure appears essential for dealing with non-convex problems.The topics discussed in this monograph include basic definitions and concepts from the classical optimization theory, the notion of the acceptable solution, machine learning, the concept of preventive maintenance, and more. The Heuristic Kalman Algorithm discussed in this book applies to many fields such as robust structured control, electrical engineering, mechanical engineering, machine learning, reliability, and preference models. This large coverage of practical optimization problems makes this text very useful to those working on and researching systems design. The intended audience includes industrial engineers, postgraduates, and final-year undergraduates in various fields of systems design. About the Author ​Rosario Toscano was born in Catania, Italy. He received his masters degree with specialization in control from the Institut National des Sciences Appliquées de Lyon in 1996. He received the Ph.D. degree from the Ecole Centrale de Lyon in 2000. He received the HDR degree (Habilitation to Direct Research) from the University Jean Monnet of Saint-Etienne in 2007. He is currently full professor at the Ecole Nationale d’Ingénieurs de Saint-Etienne and Ecole Centrale de Lyon (ENISE-ECL). His research interests include: structured controllers, robust control, stochastic optimization methods, dynamic reliability, fault detection, multimodel approach applied to diagnosis and control, fretting wear of mechanical surfaces and sensorial design of products.

 收藏 (0) 打赏

您可以选择一种方式赞助本站

支付宝扫一扫赞助

微信钱包扫描赞助

未经允许不得转载:电子书百科大全 » Solving Optimization Problems with the Heuristic Kalman Algorithm: New Stochastic Methods: 212 (Springer Optimization and Its Applications, 212)

分享到: 生成海报

评论 抢沙发

评论前必须登录!

立即登录   注册

登录

忘记密码 ?

切换登录

注册

我们将发送一封验证邮件至你的邮箱, 请正确填写以完成账号注册和激活