Warning: Constant WP_DEBUG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 98

Warning: Constant WP_DEBUG_LOG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 99

Warning: Constant WP_DEBUG_DISPLAY already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 100
Multi-armed Bandit Allocation Indices-电子书百科大全

Multi-armed Bandit Allocation Indices

Multi-armed Bandit Allocation Indices Authors: John Gittins – Kevin Glazebrook – Richard Weber
ISBN-10: 0470670029
ISBN-13: 9780470670026
Edition: 2
Release: March 21, 2011
Hardcover: 300 pages
List Price $119.00
目录 Foreword.
Foreword to the first edition.
Preface.
Preface to the first edition.
1 Introduction or Exploration.
Exercises.
2 Main Ideas: Gittins Index.
2.1 Introduction.
2.2 Decision processes.
2.3 Simple families of alternative bandit processes.
2.4 Dynamic programming.
2.5 Gittins index theorem.
2.6 Gittins index.
2.7 Proof of the index theorem by interchanging bandit portions.
2.8 Continuous-time bandit processes.
2.9 Proof of the index theorem by induction and interchange argument.
2.10 Calculation of Gittins indices.
2.11 Monotonicity conditions.
2.12 History of the index theorem.
2.13 Some decision process theory.
Exercises.
3 Necessary Assumptions for Indices.
3.1 Introduction.
3.2 Jobs.
3.3 Continuous-time jobs.
3.4 Necessary assumptions.
3.5 Beyond the necessary assumptions.
Exercises.
4 Superprocesses, Precedence Constraints and Arrivals.
4.1 Introduction.
4.2 Bandit superprocesses.
4.3 The index theorem for superprocesses.
4.4 Stoppable bandit processes.
4.5 Proof of the index theorem by freezing and promotion rules.
4.6 The index theorem for jobs with precedence constraints.
4.7 Precedence constraints forming an out-forest.
4.8 Bandit processes with arrivals.
4.9 Tax problems.
4.10 Near optimality of nearly index policies.
Exercises.
5 The Achievable Region Methodology.
5.1 Introduction.
5.2 A simple example.
5.3 Proof of the index theorem by greedy algorithm.
5.4 Generalized conservation laws and indexable systems.
5.5 Performance bounds for policies for branching bandits.
5.6 Job selection and scheduling problems.
5.7 Multi-armed bandits on parallel machines.
Exercises.
6 Restless Bandits and Lagrangian Relaxation.
6.1 Introduction.
6.2 Restless bandits.
6.3 Whittle indices for restless bandits.
6.4 Asymptotic optimality.
6.5 Monotone policies and simple proofs of indexability.
6.6 Applications to multi-class queuing systems.
6.7 Performance bounds for the Whittle index policy.
6.8 Indices for more general resource configurations.
Exercises.
7 Multi-Population Random Sampling (Theory).
7.1 Introduction.
7.2 Jobs and targets.
7.3 Use of monotonicity properties.
7.4 General methods of calculation: use of invariance properties.
7.5 Random sampling times.
7.6 Brownian reward processes.
7.7 Asymptotically normal reward processes.
7.8 Diffusion bandits.
Exercises.
8 Multi-Population Random Sampling (Calculations).
8.1 Introduction.
8.2 Normal reward processes (known variance).
8.3 Normal reward processes (mean and variance both unknown).
8.4 Bernoulli reward processes.
8.5 Exponential reward processes.
8.6 Exponential target process.
8.7 Bernoulli/exponential target process.
Exercises.
9 Further Exploitation.
9.1 Introduction.
9.2 Website morphing.
9.3 Economics.
9.4 Value of information.
9.5 More on job-scheduling problems.
9.6 Military applications.
References.
Tables.
Index.

 收藏 (0) 打赏

您可以选择一种方式赞助本站

支付宝扫一扫赞助

微信钱包扫描赞助

未经允许不得转载:电子书百科大全 » Multi-armed Bandit Allocation Indices

分享到: 生成海报

登录

忘记密码 ?

切换登录

注册

我们将发送一封验证邮件至你的邮箱, 请正确填写以完成账号注册和激活