Warning: Constant WP_DEBUG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 98

Warning: Constant WP_DEBUG_LOG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 99

Warning: Constant WP_DEBUG_DISPLAY already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 100
Modern Data Mining with Python: A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps (English Edition)-电子书百科大全

Modern Data Mining with Python: A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps (English Edition)

Modern Data Mining with Python: A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps (English Edition)
by: Dushyant Singh Sengar (Author),Vikash Chandra(Author)
Publication Date: 26 Feb. 2024
Language:English
Print Length:438 pages
ISBN-10:9355519141
ISBN-13:9789355519146
Book Description
Data miner’s survival kit for explainable, effective, and efficient algorithms enabling responsible decision-makingKey Features● Accessible, and case-based exploration of the most effective data mining techniques in Python.● An indispensable guide for utilizing AI potential responsibly.● Actionable insights on modeling techniques, deployment technologies, business needs, and the art of data science, for risk mitigation and better business outcomes.Description”Modern Data Mining with Python” is a guidebook for responsibly implementing data mining techniques that involve collecting, storing, and analyzing large amounts of structured and unstructured data to extract useful insights and patterns.Enter into the world of data mining and machine learning. Use insights from various data sources, from social media to credit card transactions. Master statistical tools, explore data trends, and patterns. Understand decision trees and artificial neural networks (ANNs). Manage high-dimensional data with dimensionality reduction. Explore binary classification with logistic regression. Spot concealed patterns with unsupervised learning. Analyze text with recurrent neural networks (RNNs) and visuals with convolutional neural networks (CNNs). Ensure model compliance with regulatory standards.After reading this book, readers will be equipped with the skills and knowledge necessary to use Python for data mining and analysis in an industry set-up. They will be able to analyze and implement algorithms on large structured and unstructured datasets.● Explore the data mining spectrum ranging from data exploration and statistics.● Gain hands-on experience applying modern algorithms to real-world problems in the financial industry.● Develop an understanding of various risks associated with model usage in regulated industries.● Gain knowledge about best practices and regulatory guidelines to mitigate model usage-related risk in key banking areas.● Develop and deploy risk-mitigated algorithms on self-serve ModelOps platforms.Who this book is forThis book is for a wide range of early career professionals and students interested in data mining or data science with a financial services industry focus. Senior industry professionals, and educators, trying to implement data mining algorithms can benefit as well.Table of Contents1. Understanding Data Mining in a Nutshell2. Basic Statistics and Exploratory Data Analysis3. Digging into Linear Regression4. Exploring Logistic Regression5. Decision Trees with Bagging and Boosting6. Support Vector Machines and K-Nearest Neighbors7. Putting Dimensionality Reduction into Action8. Beginning with Unsupervised Models9. Structured Data Classification using Artificial Neural Networks10. Language Modeling with Recurrent Neural Networks11. Image Processing with Convolutional Neural Networks12. Understanding Model Risk Management for Data Mining Models13. Adopting ModelOps to Manage Model Risk
About the Author

 收藏 (0) 打赏

您可以选择一种方式赞助本站

支付宝扫一扫赞助

微信钱包扫描赞助

未经允许不得转载:电子书百科大全 » Modern Data Mining with Python: A risk-managed approach to developing and deploying explainable and efficient algorithms using ModelOps (English Edition)

分享到: 生成海报

评论 抢沙发

评论前必须登录!

立即登录   注册

登录

忘记密码 ?

切换登录

注册

我们将发送一封验证邮件至你的邮箱, 请正确填写以完成账号注册和激活