Warning: Constant WP_DEBUG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 98

Warning: Constant WP_DEBUG_LOG already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 99

Warning: Constant WP_DEBUG_DISPLAY already defined in C:\wwwroot\ebooks.wiki\wp-config.php on line 100
Microservices for Machine Learning: Design, implement, and manage high-performance ML systems with microservices (English Edition)-电子书百科大全

Microservices for Machine Learning: Design, implement, and manage high-performance ML systems with microservices (English Edition)

Microservices for Machine Learning: Design, implement, and manage high-performance ML systems with microservices (English Edition)
by: Rohit Ranjan (Author)
Publication Date: 20 April 2024
Language:English
Print Length:394 pages
ISBN-10:9355516886
ISBN-13:9789355516886
Book Description
Empowering AI innovations: The fusion of microservices and MLKey Features● Microservices and ML fundamentals, advancements, and practical applications in various industries.● Simplify complex ML development with distributed and scalable microservices architectures.● Discover real-world scenarios illustrating the fusion of microservices and ML, showcasing AI’s impact across industries.DescriptionExplore the link between microservices and ML in Microservices for Machine Learning. Through this book, you will learn to build scalable systems by understanding modular software construction principles. You will also discover ML algorithms and tools like TensorFlow and PyTorch for developing advanced models.It equips you with the technical know-how to design, implement, and manage high-performance ML applications using microservices architecture. It establishes a foundation in microservices principles and core ML concepts before diving into practical aspects. You will learn how to design ML-specific microservices, implement them using frameworks like Flask, and containerize them with Docker for scalability. Data management strategies for ML are explored, including techniques for real-time data ingestion and data versioning. This book also addresses crucial aspects of securing ML microservices and using CI/CD practices to streamline development and deployment. Finally, you will discover real-world use cases showcasing how ML microservices are revolutionizing various industries, alongside a glimpse into the exciting future trends shaping this evolving field.Additionally, you will learn how to implement ML microservices with practical examples in Java and Python. This book merges software engineering and AI, guiding readers through modern development challenges. It is a guide for innovators, boosting efficiency and leading the way to a future of impactful technology solutions.What you will learn● Master the principles of microservices architecture for scalable software design.● Deploy ML microservices using cloud platforms like AWS and Azure for scalability.● Ensure ML microservices security with best practices in data encryption and access control.● Utilize Docker and Kubernetes for efficient microservice containerization and orchestration.● Implement CI/CD pipelines for automated, reliable ML model deployments.Who this book is forThis book is for data scientists, ML engineers, data engineers, DevOps team, and cloud engineers who are responsible for delivering real-time, accurate, and reliable ML models into production.Table of Contents1. Introducing Microservices and Machine Learning2. Foundation of Microservices3. Fundamentals of Machine Learning4. Designing Microservices for Machine Learning5. Implementing Microservices for Machine Learning6. Data Management in Machine Learning Microservices7. Scaling and Load Balancing Machine Learning Microservices8. Securing Machine Learning Microservices9. Monitoring and Logging in Machine Learning Microservices10. Deployment for Machine Learning Microservices11. Real World Use Cases12. Challenges and Future Trends
About the Author
Empowering AI innovations: The fusion of microservices and MLKey Features● Microservices and ML fundamentals, advancements, and practical applications in various industries.● Simplify complex ML development with distributed and scalable microservices architectures.● Discover real-world scenarios illustrating the fusion of microservices and ML, showcasing AI’s impact across industries.DescriptionExplore the link between microservices and ML in Microservices for Machine Learning. Through this book, you will learn to build scalable systems by understanding modular software construction principles. You will also discover ML algorithms and tools like TensorFlow and PyTorch for developing advanced models.It equips you with the technical know-how to design, implement, and manage high-performance ML applications using microservices architecture. It establishes a foundation in microservices principles and core ML concepts before diving into practical aspects. You will learn how to design ML-specific microservices, implement them using frameworks like Flask, and containerize them with Docker for scalability. Data management strategies for ML are explored, including techniques for real-time data ingestion and data versioning. This book also addresses crucial aspects of securing ML microservices and using CI/CD practices to streamline development and deployment. Finally, you will discover real-world use cases showcasing how ML microservices are revolutionizing various industries, alongside a glimpse into the exciting future trends shaping this evolving field.Additionally, you will learn how to implement ML microservices with practical examples in Java and Python. This book merges software engineering and AI, guiding readers through modern development challenges. It is a guide for innovators, boosting efficiency and leading the way to a future of impactful technology solutions.What you will learn● Master the principles of microservices architecture for scalable software design.● Deploy ML microservices using cloud platforms like AWS and Azure for scalability.● Ensure ML microservices security with best practices in data encryption and access control.● Utilize Docker and Kubernetes for efficient microservice containerization and orchestration.● Implement CI/CD pipelines for automated, reliable ML model deployments.Who this book is forThis book is for data scientists, ML engineers, data engineers, DevOps team, and cloud engineers who are responsible for delivering real-time, accurate, and reliable ML models into production.Table of Contents1. Introducing Microservices and Machine Learning2. Foundation of Microservices3. Fundamentals of Machine Learning4. Designing Microservices for Machine Learning5. Implementing Microservices for Machine Learning6. Data Management in Machine Learning Microservices7. Scaling and Load Balancing Machine Learning Microservices8. Securing Machine Learning Microservices9. Monitoring and Logging in Machine Learning Microservices10. Deployment for Machine Learning Microservices11. Real World Use Cases12. Challenges and Future Trends

 收藏 (0) 打赏

您可以选择一种方式赞助本站

支付宝扫一扫赞助

微信钱包扫描赞助

未经允许不得转载:电子书百科大全 » Microservices for Machine Learning: Design, implement, and manage high-performance ML systems with microservices (English Edition)

分享到: 生成海报

评论 抢沙发

评论前必须登录!

立即登录   注册

登录

忘记密码 ?

切换登录

注册

我们将发送一封验证邮件至你的邮箱, 请正确填写以完成账号注册和激活