Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials

Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials
by: Fu-Bao Yang(Author),Ji-Ping Huang(Author)
Publisher: Springer
Edition: 2024th
Publication Date: 13 Mar. 2024
Language: English
Print Length: 299 pages
ISBN-10: 9819704863
ISBN-13: 9789819704866


Book Description
This open access book presents a comprehensive exploration of diffusion metamaterials that control energy and mass diffusion. Currently, if from the perspective of governing equations, diffusion metamaterials and wave metamaterials (pioneered by J. B. Pendry in the 1990s) are recognised as the two most prominent branches in the field of metamaterials. These two branches differ in their emphasis on the diffusion equation (as the governing equation) and time-dependent characteristic lengths in diffusion metamaterials, as opposed to the wave equation (as the governing equation) and time-independent characteristic lengths in wave metamaterials. Organized into three distinct parts – 'Thermal Diffusion Metamaterials', 'Particle Diffusion Metamaterials', and 'Plasma Diffusion Metamaterials' – this book offers a rigorous exploration spanning physics, engineering, and materials science, aimed at advancing our understanding of diffusion processes controlled by diffusion metamaterials. Incorporating foundational theory, computational simulations, and laboratory experiments, the book equips researchers and scholars across these disciplines with comprehensive methods, insights, and results pivotal to the advancement of diffusion control. Beyond facilitating interdisciplinary discourse, the book serves as a catalyst for innovative breakthroughs at the crossroads of physics, thermodynamics, and materials science. Essentially, readers will acquire profound insights that empower them to spearhead advancements in diffusion science (diffusionics) and the engineering of metamaterials.


About the Author


From the Back Cover This open access book presents a comprehensive exploration of diffusion metamaterials that control energy and mass diffusion. Currently, if from the perspective of governing equations, diffusion metamaterials and wave metamaterials (pioneered by J. B. Pendry in the 1990s) are recognised as the two most prominent branches in the field of metamaterials. These two branches differ in their emphasis on the diffusion equation (as the governing equation) and time-dependent characteristic lengths in diffusion metamaterials, as opposed to the wave equation (as the governing equation) and time-independent characteristic lengths in wave metamaterials. Organized into three distinct parts – 'Thermal Diffusion Metamaterials', 'Particle Diffusion Metamaterials', and 'Plasma Diffusion Metamaterials' – this book offers a rigorous exploration spanning physics, engineering, and materials science, aimed at advancing our understanding of diffusion processes controlled by diffusion metamaterials. Incorporating foundational theory, computational simulations, and laboratory experiments, the book equips researchers and scholars across these disciplines with comprehensive methods, insights, and results pivotal to the advancement of diffusion control. Beyond facilitating interdisciplinary discourse, the book serves as a catalyst for innovative breakthroughs at the crossroads of physics, thermodynamics, and materials science. Essentially, readers will acquire profound insights that empower them to spearhead advancements in diffusion science (diffusionics) and the engineering of metamaterials.
About the Author Fu-Bao Yang received his B.S. degree from Xiamen University in 2018 and Ph.D. degree from Department of Physics, Fudan University, Shanghai, China in 2023. His research interest includes transformation thermotics and extended theories; thermal metamaterials and their applications; diffusion metamaterials.Ji-Ping Huang obtained his Ph.D. in Physics from the Chinese University of Hong Kong, Hong Kong, China, in 2003. Since 2005, he has been a Professor in the Department of Physics at Fudan University, Shanghai, China. In 2004-2005, he was a Research Fellow of the Alexander von Humboldt foundation in Germany. His current research interests include non-equilibrium statistical physics, thermal metamaterials: transformation thermotics (thermodynamics) and extended theories, diffusion metamaterials: controlling energy and mass diffusion (diffusionics), non-Hermitian topology in diffusion systems, modern thermodynamics, and soft condensed matter theory. His groundbreaking work includes introducing the thermal cloak concept and extending it to diffusion metamaterials. As a result, from the perspective of governing equations, diffusion metamaterials and wave metamaterials (pioneered by J. B. Pendry in the 1990s) are recognized as the two most prominent branches in the field of metamaterials. These two branches differ in their emphasis on the diffusion equation (as the governing equation) and time-dependent characteristic lengths in diffusion metamaterials, in contrast to the wave equation (as the governing equation) and time-independent characteristic lengths in wave metamaterials. Huang's pioneering contributions to diffusion metamaterials have been widely acknowledged and recognized by his colleagues, leading to invitations to publish review articles in Reviews of Modern Physics and Nature Reviews Physics, respectively.

资源下载资源下载价格10立即购买
1111

未经允许不得转载:电子书百科大全 » Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials

评论 0

评论前必须登录!

登陆 注册